Raman Spectroscopy

Group Leader

Dr. Martin A. Ziemann

E-mail:
ziemann@geo.uni-potsdam.de
Phone:
+49 331 977 5876
Fax:
+49 331 977 5700
Arbeitsgruppenbild Allgemeine Geologie

Description

Raman spectroscopy is a non-destructive technique based on the inelastic scattering of light (Raman scattering) that allows microscopic examination of minerals and other materials. Excited by monochromatic light (laser), the specimen emits scattered light showing different frequencies than the laser light in the spectrum (Raman bands). The differences in the frequencies (Raman-shift) contain vibrational information of molecules in the specimen, and by that of its composition and structure.

Instrumentation

Raman spectrometer LabRAM HR 800 (HORIBA Jobin Yvon), equipped with:

Multiple laser sources:

  • air-cooled Nd:YAG laser (λ = 532 nm)
  • air-cooled HeNe laser (λ = 633 nm)
  • diode laser (λ = 785 nm)

Spectrograph:

  • 800 mm focus length
  • covers the spectral region 450–1100 nm
  • spectral resolution 1–2 cm-1 (in high resolution mode)

Detector:

  • Peltier cooled multichannel CCD detector (1024 pixel)
  • covers the spectral region 400–1050 nm

Integrated confocal microscope:

  • confocal microscope BX41 (Olympus) with white light illumination for observation in transmitted and reflected mode
  • high precision motorised XY translation stage for Raman confocal mapping
  • spacial resolution of confocal spot analysis: lateral and axial: a few micrometers

Software

LabSpec:

  • Spectrometer program controls instrument functions and data acquisition
  • Control of the external components (TV camera, motorised XY stage)
  • Spectral data treatment (baseline correction, spectral subtraction, band fitting, de-convolution, …)

Other software:

  • Peakfit, allows detailed analysis of spectral data
  • Spec ID, a spectral library for identification of minerals

References

Franziska DH Wilke, Patrick J O'Brien, Alexander Schmidt, Martin A Ziemann (2015): Subduction, peak and multi-stage exhumation metamorphism: traces from one coesite-bearing eclogite, Tso Morari, western Himalaya. Lithos 231, p. 77-91. DOI: 10.1016/j.lithos.2015.06.007.

Mesut Aygül,  Aral I. Okay, RolandOberhaensli, Martin A Ziemann (2015): Thermal structure of low-grade accreted Lower Cretaceous distal turbidites, the Central Pontides, Turkey: insights for tectonic thickening of an accretionary wedge. Turkish Journal of Earth Sciences (TJES) 24, p.461-474.  DOI:10.3906/yer-1504-4.

Birgit A. Schmidt, Martin A. Ziemann, Simone Pentzien, Toralf Gabsch, Werner Koch and Jörg Krüger (2015): Multi-method analysis of a Central Asian wall painting detached from a Buddhist cave temple at the northern Silk Road. Studies in Conservation, London, published online 09.02.2015, DOI: 10.1179/2047058414Y.0000000152

Silvio Ferrero, Bernd Wunder, Katarzyna Walczak, Patrick J. O’Brien, Martin A. Ziemann (2015)Preserved near ultrahigh-pressure melt from continental crust subducted to mantle depths. Geology 43(5), p. 447-450. DOI: 10.1130/G36534.1

Linke, R and Ziemann MA (2014): The detection of copper-based pigment darkening by Biuret-reaction in mural paintings by SEM-EDX, micro-XRF and micro-Raman spectroscopy. International Journal of Conservation Science 5 (2), p. 129-138. ISSN 2067-533X

Scharf A, Handy MR, Ziemann MA, Schmid SM (2013): Peak temperature patterns of accretion-, subduction- and collision-related metamorphic events in the eastern subdome of the Tauern Window (Eastern European Alps) – A study with Raman microspectroscopy on carbonaceous material (RSCM). Journal of Metamorphic Geology 31 (7), p. 863-880. DOI: 10.1111/jmg.12048

Frijia G,   Guenther C, and  Ziemann MA (2012): An extraordinary single-celled architect: A multi-technique study of the agglutinated shell of the larger foraminifer  Mesorbitolina from  the Lower Cretaceous of southern Italy. Marine Micropaleontology 90-91, p. 60-71. DOI: 10.1016/j.marmicro.2012.04.002

Kotkova J, O’Brien PJ, and Ziemann MA (2011): Diamond and coesite discovered in Saxony-type granulite: Solution to the Variscan garnet peridotite enigma. Geology 39 (7), p. 667-670. DOI: 10.1130/G31971.1

Ziemann, M. A., 2012. Ramanspektroskopische Charakterisierung von Malschichtveränderungen, 172–177. - In: Gabsch, T. (ed.): Auf Grünwedels Spuren – Restaurierung und Forschung an zentralasiatischen Wandmalereien. Koehler & Amelang, Leipzig, 207 pp. ISBN 978-3-7338-0385-8

Wiederkehr, M., Bousquet, R., Ziemann, M. A., Berger, A. & Schmid, S., 2011. 3-D assessment of peak-metamorphic conditions by Raman spectroscopy of carbonaceous material: an example from the margin of the Lepontine dome (Swiss Central Alps). International Journal of Earth Sciences, 100:1029–1063. doi:10.1007/s00531-010-0622-2

Schicks, J.M., Ziemann M. A., Lu, H. & Ripmeester, J. A., 2010. Raman Spectroscopic investigations on natural samples from the Integrated Ocean Drilling Program (IODP) Expedition 311: indications for heterogeneous compositions in hydrate crystals. Spectrochimica Acta Part A, 77(5):973–977. doi:10.1016/j.saa.2010.08.033

O’Brien, P. J. & Ziemann, M. A., 2008. Preservation of coesite in exhumed eclogite: insights from Raman mapping – special issue to honour Werner Schreyer. European Journal of Mineralogy, 20(5):827–834. doi:10.1127/0935-1221/2008/0020-1883

Ziemann, M. A., (2006): In situ micro-Raman spectroscopy on minerals on-site in the Grotto Hall of the New Palace, Park Sanssouci, in Potsdam. Journal of Raman Spectroscopy, 37(10):1019–1025. doi:10.1002/jrs.1584

Nasdala, L., Smith, D. C., Kaindl, R. & Ziemann, M. A., 2004. Raman spectroscopy: Analytical perspectives in mineralogical research. - In: Beran, A., and Libowtzky, E.: Spectroscopic methods in Mineralogy. EMU - Notes in Mineralogy, vol. 6, 281–343. (Budapest, Eötvös University Press)

Schrader, B. (ed.), 1995. Infrared and Raman spectroscopy: methods and applications. VCH Verlagsgesellschaft Weinheim u.a.

Hawthorne, F. C. (ed.), 1988. Spectroscopic methods in Mineralogy and Geology. Reviews in Mineralogy, vol. 18.