• Forschungsthema
  • Aktuelle Projekte
  • Ehemalige Projekte

Research Activities

The research activities of our group link studies of tectonics, climate and Earth surface processes on geologic to annual time scales. The overarching goal is to better understand tectonic and surface processes and their conspiring activity in sculpting the surface of our planet and influencing the human habitat. These multifaceted interactions constitute some of the most fascinating areas of research in the geosciences. It has been known for a long time that tectonism plays a critical role in the evolution of climate, affecting atmospheric circulation and ocean currents. However, the task of correctly differentiating between tectonically and climatically driven processes and their influence on material flux and topographic evolution is complicated by variations in tectonic rates and long-wavelength climate change or short-term climate variability. For example, discrepancies between erosion-rate estimates made over different timescales show that climate change and climatic variability have fundamental impacts on erosive efficiency. Therefore, through the use of different radiometric dating techniques, low-temperature thermochronology, climate proxies in geological archives, and satellite-based measurements of precipitation and glacial budgets, we strive to decipher tectonically and climatically driven processes at different time and length scales. This offers unique, direct insights into process rates and their determinants, ultimately providing information on the tectonic and climatic forcing mechanisms that govern the face of the Earth. In addition to these activities, the group is studying the long-term effects of tectonic stress-field evolution on sedimentary basins, the tectonic differentiation of terrestrial sedimentary environments, as well as the behavior of linked fault systems and landscape evolution in mountain belts and rifts. Below, we provide a synopsis of our ongoing research projects:

Plateau evolution and climate in the southern Central Andes

Next to Tibet, the Andean Altiplano/Puna Plateau is the second largest plateau province on Earth. Processes linked with the development of the plateau have had a sustained influence on the tectonic evolution of the plateau margins and adjacent regions in the broken foreland of the Andes and the Subandean foreland fold-and-thrust belt. In our studies we (1) analyze the role of long-term climatic change on plateau formation in the southern central Andes of Bolivia and Argentina; (2) determine the onset of humid vs. arid climate conditions along the eastern flanks of the Andean plateau margin; (3) assess the role of tectonic versus climatic forcing in the filling and evacuation of intermontane sedimentary basin fills; and (4) strive to determine paleo-elevations using O isotopes measured on paleosols and volcanic glass in Tertiary volcanic ash layers.

Monitoring glacial and hydrological systems in the Himalayan region

One of the most conspicuous effects of recent climate change is the widespread melting and retreat of glaciers. Changes in glacial and snow-covered areas affects the generation of meltwaters and mountainous runoff. This has consequences for densely populated areas of south and central Asia, where snow and glacial meltwaters are an important source for drinking water, irrigation, and hydropower. However, any type of ground-based data (e.g., glaciological, hydrological, meteorological) from these regions is scarce, which makes quantitative assessments of recent trends and predictions of future evolutions notoriously difficult. In an effort to bridge these data gaps and to investigate glacial and hydrological systems in this region, our research group is using a combination of field work, analysis of remote-sensing data, and modeling. This includes (1) regional, large-scale monitoring of recent glacier dynamics, as well as more detailed studies on specific glaciers, (2) ground-based studies in the western Himalaya, which focus on erosion and sediment transport on various time scales, and (3) hydrological modeling based on calibrated satellite data. Ongoing projects are embedded in the PROGRESS research cluster, the DFG Graduateschool GK1364, and closely connected with research foci at Deutsches GeoForschungsZentrum.

Read more ...

Plateau evolution in Turkey: vertical movements of the Anatolian plateau (VAMP)

While important advances have been made in understanding the evoultion of the Tibetan and Andean plateau regions, large gaps exist regarding the Anatolian plateau. The neotectonic evolution of this region, its impact on atmospheric circulation patterns, and its relationship with coeval tectonic and magmatic processes, are still not adequately understood. In this project we seek to unravel the evolution of the plateau and assess its influence regarding climate and climate-driven surface processes through detailed low-temperature thermochronologic and geomorphic studies. In particular, we are analyzing the exhumation history of the plateau flanks using (U-Th)/He thermochronolgy, geomorphic and structural mapping as well as cosmogenic nuclide dating of incised pediment and fluvial terrace systems. In addition it is our goal to better understand the evolution of normal faulting in the plateau interior using field observation, radiometric dating, and DGPS surveys.

Forearc segmentation and the earthquake cycle in South-Central Chile

Forearc regions are among the most tectonically active settings worldwide, often subject to pronounced tectonic uplift and subsidence. Surface uplift, subsidence history, and the composite landscapes that evolve in such regions may thus provide important insight into the factors that govern the geodynamic and structural evolution of these dynamic environments. The forearc of South-Central Chile is characterized by different seismotectonic and geomorphic segments, documenting a distinct spatiotemporal tectonic evolution that may encapsulate important information concerning crustal behavior during the seismic cycle. In this study our goals are focused on (1) defining the long-term style and chronology of tectonic processes in the forearc region; (2) estimating deformation rates over the seismic cycle and the Quaternary Period in the southern sector of the Valdivia 1960 earthquake segment; (3) obtaining a paleoseismic record of subduction earthquakes in this region; and (4) integrating deformation rates and paleoseismic records to obtain a strain partitioning budget and explore its influence on modulating earthquake recurrence and magnitude.

Biomarkers and their stable isotope composition (d13C, D/H) as recorders of ancient ecosystems and changes in the hydrological cycle

Specific organic compounds in sediments are sometimes termed "molecular fossils" or biomarkers, because their presence can be used to infer the relative contributions of, for instance, algae, bacteria or land plants into the sedimentary record (1, 2). Through advances in analytical methods, it has become possible to measure the stable isotopic composition (the ratio of carbon 13 and carbon 12, d13C; and the ratio of deuterium and protium, dD or D/H) of these biomarkers from which additional source and climatic information about the time of deposition can be derived. Especially the D/H composition of lipids has developed into a promising new proxy for paleohydrology, as every photosynthetic organism uses (environmental) water as their hydrogen source. In this study we strive to identify the environmental and physiological forcing parameters determining the D/H composition of higher plant lipids, to be able to use their D/H ratio as a paleo-evaporation proxy. Furthermore, we are applying lipid D/H measurements to reconstruct changes in the hydrology in the catchments of European lakes throughout the Holocene, to determine the response of the hydrological cylcle to climatic changes.

Geomicrobiology Group: The role of dissolved gases on microbial ecosystems in the deep subsurface biosphere

Sedimentary organic matter constitutes  the largest reactive carbon pool on Earth. During burial it becomes increasingly recalcitrant, thereby reducing its bio-availability and limiting metabolic activity in the deep biosphere. However, at greater depths dissolved gases of either biogenic or thermogenic origin play important roles as energy and food sources for microbial communities.  Subsurface environments are characterized by high pressure, which allows for much higher solubility of gases compared to the surface. Theses gases usually are  lost upon sample retrieval.  The Geomicrobiology group focuses on the development of incubation devices which allow for the recreation of true in-situ conditions, including gas saturation as well as novel detection and quantification techniques. These efforts will help elucidate the reaction of microbial communities to varying gas concentrations and compositions. To date, such studies have been typically carried out in natural marine systems. Being part of the GeoEnergy Project funded by the German Federal Ministry of Science and Technology, we aree also focusing on the influence of anthropogenic storage of CO2 in subsurface reservoirs.

Fault interactions on different time and length scales: the North-Tehran-Thrust and the Mosha-Fasham-Fault, Alborz mountains, Northern Iran

The process of fault propagation and the possible interaction between faults through stress triggering in continental settings remains a major challenge for geoscientists. A better knowledge of this issue is not only important in order to characterize fault behavior on long timescales, but it is crucial on different timescales that span the Quaternary and may ultimately mitigate seismic and related natural hazards. The Alborz Mountains in the Tehran region of north-central Iran offer an excellent opportunity to study the geometric and kinematic evolution of fault segments and fault interaction. Here, we find evidence for thrusts, strike-slip faults, and obliquely slipping thrust faults that have been active at varying timescales, indicating a transpressional environment characterized by dip-slip thrusting and left-lateral strike slip faulting. The two major fault systems bounding the Alborz Mountains to the south are the North Tehran Thrust (NTT) and the Mosha Fasham Fault (MFF). Despite numerous Quaternary fault-offsets and destructive historical earthquake records it is not known, however, how these faults are linked and how they interact. We are studying the Quaternary history of these faults and characterize their kinematic evolution and their possible interaction through time trough detailed structural mapping, fault-kinematic analysis, and cosmogenic nuclide dating. On geologic time scales, spanning the Cenozoic evolution of this region, we are analyzing the exhumation history using (U-Th)/He thermochronology, perform sandstone petrology and conglomerate provenance analysis, and magnetostratigraphy to develop spatiotemporal scenarios of the tectono-sedimentary evolution of this region in light of the dynamics of the Arabia-Eurasia collision.

Exhumation, topography and the interplay between tectonics and climate: insights from thermochronology and surface-process studies (Himalaya, Tien Shan and Pamir)

The topography reflects tectonism at variuos length and time scales and the overprint of multiple climate-driven processes and related effects in changes of erosional efficiency. On long time scales, focused precipitation and mass removal may even introduce changes to the tectonic stresses in the orogen and affect the locus of tectonic activity. While many of these issues are beginning to be understood now, numerous open questions remain. For example, it is still not very well known what the necessary time scales are to generate topographic changes that develop into efficient orographic barriers. Importantly, it has not been been very well established, which kind of processes of erosion are most efficient, and which climatic and erosional thresholds exist to significantly alter a tectonically active system. Furthermore, it is poorly known, which role transient sediment storage in intermontane basins plays in triggering or abandoning fault activity, how such sediment fills are stored in such basins, and how they influence foreland sedimentation, once connectivity with the foreland has been re-established. Feedbacks between these processes apparently exist, but the time scales at which changes may be efficiently introduced into the system are vaguely known. Therefore, the recognition of positive feedback mechanisms between the effects of sustained precipitation patterns, vegetative cover, weathering, and tectonic activity in a mountain belt are first-order research topics that merit further consideration. In our projects in the Himalaya, Tien Shan, and Pamir we address these issues and strive to unravel the complex relationships between various surface processes and tectonic evolution.