3D Lab / VR

tl_files/arbeitsgruppen/3D-Lab/3D_lab_01.jpg

  • Overview
  • Equipment
  • Projects
  • Contact

 

The 3D - Lab is a project of the University of Potsdam within PROGRESS.

Since June 2011 a 3-sided virtual reality Cave has been operative at the Institute of Environmental and Earth Sciences at Potsdam University. This facility, which is open to industry and academic partners, is an integrative part of PROGRESS, the Potsdam Research Cluster for Georisk Analysis, Environmental Change and Sustainability. Already during the initial planning and setup phase of the installation, the focus was on the usability for research and teaching. Key for usability are (1) a fast and smooth data/model transfer from standard geological software (e.g. Visit, MOVE, PETREL, ArcGIS) to the 3-dimensional visualization in order to avoid time consuming data transformation to highly specified visualization software, and (2) the capability to modify models directly within the visualization cluster by the user with the familiar standard software. This is achieved with Techviz, a software that allows to run at a level above the mentioned standard applications in a Cave setting. The Cave comprises three 3.84 x 2.4 m screens (two side walls, one floor) with a resolution of 2 mm per pixel. The applied 3D stereo technology is Active Stereo for small groups (up to five persons) and Active Infitec for groups of up to ten persons. Users are tracked with an ART head-, flightstick- and finger-tracking system.

Poster presentation at EGU 2011, Vienna                          Cave in action, MOVE

Media: Südkurier 2011       MAZ 2011       RBB-Online 2013

Event Calendar 3D Lab

< August 2017 September 2017 October 2017 >
Sunday Monday Tuesday Wednesday Thursday Friday Saturday
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

CAVE Software

  • Arc Scene
  • Petrel
  • Visit
  • Move
  • ParaView
  • Fledermaus
  • VRML
  • Google Earth and Google Sketchup
  • ... and more (please contact us for more detailed information)

Technical Details

  • 3 sided Cave
    • 2 Screens in 90°-angle (backprojection)
    • 1 Floorprojection (frontprojection)
    • each 3.84m x 2.40m (width x height)
  • 3 Projectors Barco NW - 12
    • Resolution 1920x1200px (WUXGA)
    • Data link over DVI, RGBHV, VGA
    • Control over Ethernet
  • Stereoprojections
    • Aktive Stereo
    • Aktiv Infitec
  • 4 Workstations
    • 3 Workstations each for one Screen: Intel Xeon X5550, 12 GB memory, NVIDIA Quadro M 5000
    • 1 Controlworkstation : 2 x Intel Xeon X5550, 24 GB memory, NVIDIA M 5000
  • A.R.T.-Trackingsystem
    • optical Trackingsystem
    • six cameras
    • Input devices: Flystick 3, Fingertracking
  • Controlsystem
    • Crestron
  • Soundsystem
    • Denon 7.1 Receiver
    • Teufel 7.1 Soundsystem

In the research realm using 3-dimensional visualization in the Cave provides improved and much faster recognition of complex structures and offers the immediate possibility of discussing and manipulating models during discussions with peers. A successful utilization of this system by many researchers requires, however that the familiarization with the technical and management aspects is brief in order to attract frequent users that can implement and visualize own data/models. The user will use familiar software for display and manipulation, while the software organizing the display signal in the Cave works in the background. One shortcoming is that the perspective is only calculated for the tracked head (of the principal user), while other users do not have a similar perspective.

This circumstance requires moderate changes of viewing angles from the main user. Nevertheless, this projection technique allows groups to discuss scientific questions through advanced visualization and combination of diverse spatiotemporal data.

Our experience with this system as a teaching tool is excellent. Student feedback emphasized the improved visual recognition of complex structures compared to classical 2D figures. This very important aspect will ultimately lead to an increase of 3-dimensional visualization covering many geologically relevant structures and patterns (e.g. crystal lattice, fossil shapes, seismic cubes, phase diagrams, folds etc.), providing a profound introduction into the 3-dimensionality of Earth Sciences starting already at the BSc level. Without doubt, virtual reality is an excellent tool for visualizing, researching and teaching geological data/models and complex spatial relationships that will ultimately lead to frequent use in education.

Selected projects and events (not complete):

Projects
Kohat area

Ghani/Sobel/Zeilinger

Dreidimensionale Erfassung von tektonisch-morphologischen Strukturen im Untergrund; Überschneidung morphologischer Daten mit Oberflächencharakteristika (z.B. Fernerkundungsdaten)  

Kirgisia trench

Patyniak/Landgraf/Zeilinger

3D-Charakterisierung des oberflächennahen Untergrundes  

Alborz

Balling/Ballato/Zeilinger

Dreidimensionale Erfassung von tektonisch-morphologischen Strukturen im Untergrund  

Tonco area

Payrola/Zeilinger

Dreidimensionale Analyse und von Sedimentbecken im Untergrund und Charakterisierung für Lagerstättenexploration;  Geologische und stratigraphische Modellierung  

Allai valley (Nura)

Teshebaeva/Echtler/Sobel/Zeilinger

Dreidimensionale Erfassung von tektonisch-morphologischen Strukturen im Untergrund; Überschneidung morphologischer Daten mit Oberflächencharakteristika (z.B. Fernerkundungsdaten)  

67P/Churyumov-Gerasimenko

Pedroza/Arnold/Zeilinger

Dreidimensionale "Landschafts-" visualisierung. dreidimensionale Kartensysteme. zur schnellen 3D-Visualisierung.  

Representation of the fault structure in North Pamir (Kyrgyzstan)


Kuvshinnikova/Zeilinger

Dreidimensionale Erfassung von tektonisch-morphologischen Strukturen im Untergrund; Überschneidung morphologischer Daten mit Oberflächencharakteristika (z.B. Fernerkundungsdaten)  

Deformation in the Bolivian Subandes

Hadeen/Zeilinger

Dreidimensionale Erfassung von tektonisch-morphologischen Strukturen im Untergrund; Überschneidung morphologischer Daten mit Oberflächencharakteristika (z.B. Fernerkundungsdaten)  

Chilean Coast Jarra/Melnick
hydrologische Simulation Becker/Korup
Taiwan Cook, GFZ
Tomographie-Modell Pamir Sippl, GFZ
Imersive pointing device

Schlegel, Buschmann (HPI), Zeilinger

Unterstützung der Partner/Nutzer bei der 3D- und Stereo-Visualisierung großer Datenmengen großer Datenmengen, Präsentation, Softwareentwicklung  

Bayesian networks Riggelsen
Salar de Pocitos Freymark
   
Teaching
Southern France Teaching GIS (BScW06)
Weisseritz Geosimulator (A. Walz), 2013-2015
Bolivia Teaching GIS (BScW24)  
div. areas Teaching GIS (MGEW16)    
Pedraforca Teaching mapping (MGEW11)      
div. areas   Visiting Petroleum Geoscience class FU Berlin (2013, 2014)
Pervasive Computing Lucke, April, 2013
Geo.X Summer School 2013
Demonstrations
China Geological Survey December 2016
ComO-QM Audit in Potsdam June 2016
Kanzler und Dekan Universität Mazar/Balkh May 2013
Videodreh für eine virtuelle 360°-Campusführung May 2015
Lange Nacht der Wissenschaft 2011/12
Lehrstuhl für Komplexe Multimediale Anwendungs-architekturen April 2013
Universidad National de Bogota 2012
DAAD 2012
Chinese collaboration partner (TIPTIMON) 2012
Kolumbianische Botschaft 2012
Hasso-Plattner-Institut, 3D-Stadtmodelle 2011
Petrobras Brasilien 2011
3D Reality Maps GmbH 2011
ASTRIUM GmbH 2011/12
Landesvermessung BRB September 2011
CEBBIS International Seminar 2011

   


 

laboratory head + Geology

Dr. Gerold Zeilinger 
University of Potsdam
Phone:++49 (0) 331 977 5839 
E-Mail:zeilinger @ geo.uni-potsdam.de

Geophysics

Dr. Matthias Ohrnberger 
University of Potsdam
Phone:++49 (0) 331 977 5785 
E-Mail:mao @ geo.uni-potsdam.de

Coordinator

Dr. Andreas Bergner
University of Potsdam
Phone: ++49 (0) 331 977 5843 
E-Mail:bergner @ geo.uni-potsdam.de